- конечная полугруппа
- finite semigroup мат.
Русско-английский научно-технический словарь Масловского. 2015.
Русско-английский научно-технический словарь Масловского. 2015.
ЛОКАЛЬНО КОНЕЧНАЯ ПОЛУГРУППА — полугруппа, в к рой каждая конечно порожденная подполугруппа конечна. Всякая Л. к. п. будет периодической полугруппой. Обратное неверно: существуют даже периодич. группы, не являющиеся локально конечными (см. Бёрнсайда проблема). Задолго до… … Математическая энциклопедия
ПОЛУГРУППА С УСЛОВИЕМ КОНЕЧНОСТИ — полугруппа, обладающая нек рым свойством q таким, что всякая конечная полугруппа обладает этим свойством (такое свойство q наз. условием конечности). В определении свойства q могут фигурировать элементы полугруппы, ее подполугруппы и т. п.… … Математическая энциклопедия
ПОЛУГРУППА — множество с одной бинарной операцией, удовлетворяющей закону ассоциативности. Понятие П. есть обобщение понятия группы:из аксиом группы остается лишь одна ассоциативность; этим объясняется и термин П. . П. называют иногда моноидами, но последний… … Математическая энциклопедия
ФИНИТНО АППРОКСИМИРУЕМАЯ ПОЛУГРУППА — резидуально конечная полугруппа, полугруппа, для любых двух различных элементов аи bк рой существует такой ее гомоморфизм j в конечную полугруппу S, что Свойство полугруппы Sбыть Ф. а. п. эквивалентно тому, что . подпрямое произведение конечных… … Математическая энциклопедия
УПОРЯДОЧЕННАЯ ПОЛУГРУППА — полугруппа, наделенная структурой (частичного, вообще говоря) порядка стабильного относительно полугрупповой операции, т. е. для любых элементов а, b, с из следует и Если отношение на У. н. Sесть линейный порядок, то S наз. линейно упорядоченной… … Математическая энциклопедия
ВПОЛНЕ ПРОСТАЯ ПОЛУГРУППА — один из важнейших типов простых полугрупп. Полугруппа Sназ. вполне простой (вполне 0 простой в. 0 п. п), если она идеально проста (0 проста) и содержит примитивный идемпотент, т … Математическая энциклопедия
НИЛЬПОЛУГРУППА — полугруппа с нулем, некоторая степень каждого элемента к рой равна нулю. Н. составляют один из важнейших классов периодических полугрупп:. это в точности периодич. полугруппы с единственным идемпотентом, являющимся нулем. Более узкий класс… … Математическая энциклопедия
ОБРАТИМЫЙ ЭЛЕМЕНТ — полугруппы с единицей элемент х, для к рого существует такой элемент у, что ху=1 (правая обратимость) или ух=1 (левая обратимость). Если элемент обратим и справа и слева, то он наз. двусторонне обратимым (часто просто обратимы м). Множество… … Математическая энциклопедия
ПОЛУГРУПП МНОГООБРАЗИЕ — класс полугрупп, задаваемый системой тождеств (см. Алгебраических систем многообразие). Всякое П. м. будет либо периодическим, т. е. состоит из периодич. полугрупп, либо надкоммутативным, т … Математическая энциклопедия
МИНИМАЛЬНЫЙ ИДЕАЛ — минимальный элемент частично упорядоченного множества идеалов определенного типа нек рой алгебраич. системы. Поскольку порядок в множестве идеалов определяется отношением включения, М. и. идеал, не содержащий отличных от себя идеалов того же типа … Математическая энциклопедия
АЛГЕБРАИЧЕСКИХ СИСТЕМ МНОГООБРАЗИЕ — алгебраических систем класс фиксированной сигнатуры и, аксиоматизируемый при помощи тождеств, т. е. формул вида где к. л. предикатный символ из или знак равенства, а термы сигнатуры Q от предметных переменных А. с. м. наз. иначе э к,… … Математическая энциклопедия